Researchers commonly interpret effect sizes by applying benchmarks proposed by Jacob Cohen over a half century ago. However, effects that are small by Cohen’s standards are large relative to the impacts of most field-based interventions. These benchmarks also fail to consider important differences in study features, program costs, and scalability. In this article, I present five broad guidelines for interpreting effect sizes that are applicable across the social sciences. I then propose a more structured schema with new empirical benchmarks for interpreting a specific class of studies: causal research on education interventions with standardized achievement outcomes. Together, these tools provide a practical approach for incorporating study features, costs, and scalability into the process of interpreting the policy importance of effect sizes.
Year of publication
2020
Publication
Educational Researcher
External Download